科技前沿

杨辉/周海波等利用CasRx在神经性疾病治疗领域取得重大进展

日期:2020-04-09  浏览次数:5373

文章来源:BioArt


人类的神经系统包含成百上千种不同类型的神经元细胞。在成熟的神经系统中,神经元一般不会再生,一旦死亡,就是永久性的。神经元的死亡会导致不同的神经退行性疾病,常见的有阿尔兹海默症(Alzheimer disease,AD)和帕金森症(Parkinson’s disease,PD)。此类疾病的病因尚不明确且没有根治的方法,因此对人类的健康造成巨大威胁。据统计,目前全球大约有1亿多的人患有神经退行性疾病,而且随着老龄化的加剧,神经退行性疾病患者数量也将逐渐增多。在常见的神经性疾病中,视神经节细胞死亡导致的永久性失明多巴胺神经元死亡导致的帕金森疾病是尤为特殊的两类,它们都是由于特殊类型的神经元死亡导致。

我们之所以能看到外界绚烂多彩的世界,是因为我们的眼睛和大脑中存在一套完整的视觉通路,而连接眼睛和大脑的神经元就是视神经节细胞。作为眼睛和大脑的唯一一座桥梁,视神经节细胞对外界的不良刺激非常敏感。研究发现很多眼疾都可以导致视神经节细胞的死亡,急性的如缺血性视网膜病,慢性的如青光眼。视神经节细胞一旦死亡就会导致永久性失明。据统计,仅青光眼致盲的人数在全球就超过一千万人。帕金森疾病是一种常见的老年神经退行性疾病。它的发生是由于脑内黑质区域中一种叫做多巴胺神经元的死亡,从而导致黑质多巴胺神经元不能通过黑质-纹状体通路将多巴胺运输到大脑的另一个区域纹状体。目前,全球有将近一千万人患有此病,我国尤为严重,占了大约一半的病人。如何在成体中再生出以上两种特异类型的神经元,一直是全世界众多科学家努力的方向。

CRISPR/Cas9介导基因编辑技术自从问世以来,已经在各个研究领域得到了非常广泛的应用。由于CRSIPR/Cas9是直接对DNA进行永久性修改并且具有潜在的脱靶效应,在临床应用中,可能会产生巨大的安全隐患。最近几年,以Cas13家族为代表的RNA靶向基因编辑技术被发展出来,其中以CasRx(RfxCas13d)尤为受到关注与重视【1】。在不触动DNA的前提下,这项技术就可以对目标基因的表达实现非常强的抑制效果,值得一提的是2020年3月18日,上海科技大学黄鹏羽实验室与中科院神经科学研究所杨辉实验室合作,在Protein & Cell杂志发表研究论文,首次利用Cas13d家族蛋白CasRx在小鼠肝脏中实现了基因的高效沉默,从而证实Cas13d系统在成体动物体内也具有靶向沉默RNA的活性【2】。相对于Cas9,Cas13家族蛋白比较小,很容易被包装进AAV中,而且非常特异,在RNA水平上极少产生脱靶效应,让其在安全性以及潜在的疾病治疗上拥有了巨大的优势。

2020年4月8日,来自中国科学院脑智卓越中心(中国科学院神经科学研究所)杨辉团队在Cell上发表了题为Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice的文章。本项研究在杨辉研究员和博士后周海波的共同指导下完成。项研究通过运用最新开发的RNA靶向CRISPR系统CasRx特异性地在视网膜穆勒胶质细胞中敲低Ptbp1基因的表达,首次在成体中实现了视神经节细胞的再生,并且恢复了永久性视力损伤模型小鼠的视力。同时,该研究还证明了这项技术可以非常高效且特异地将纹状体内的星形胶质细胞转分化成多巴胺神经元,并且基本消除了帕金森疾病的症状。该研究将为未来根治以上两种严重的神经退行性疾病提供了可能,同时也为众多神经退行性疾病的治疗提供一个新的途径。


该研究中,
研究人员首先在体外细胞系中筛选了高效抑制Ptbp1(BioArt注:2013年UCSD的付向东教授实验室在Cell报道了单独敲低Ptbp1可以在体外实现将小鼠成纤维细胞转分化为功能性神经元,第一作者薛愿超博士现为中科院生物物理所研究员【3】表达的gRNA,设计了特异性标记穆勒胶质细胞和在穆勒胶质细胞中表达CasRx的系统。所有元件以双质粒系统的形式被包装在AAV中并且通过视网膜下注射,特异性地在成年小鼠的穆勒胶质细胞中下调Ptbp1基因的表达。大约一个月后,研究人员在视网膜视神经节细胞层发现了由穆勒胶质细胞转分化而来的视神经节细胞,并且转分化而来的视神经节细胞可以像正常的细胞那样对光刺激产生相应的电信号。研究人员进一步发现,转分化而来的视神经节细胞可以通过视神经和大脑中正确的脑区建立功能性的联系,并且将视觉信号传输到大脑。

在视神经节细胞损伤的小鼠模型中,研究人员发现转分化的视神经细胞可以让永久性视力损伤的小鼠重新建立对光的敏感性。为进一步发掘Ptbp1介导的胶质细胞向神经元转分化的治疗潜能,研究人员证明了该策略还能特异性地将纹状体中的星形胶质细胞非常高效的转分化为多巴胺神经元,并且证明了转分化而来的多巴胺神经元能够展现出和黑质中多巴胺神经元相似的特性。在行为学测试中,研究人员发现这些转分化而来的多巴胺神经元可以弥补黑质中缺失的多巴胺神经元的功能,从而将帕金森模型小鼠的运动障碍逆转到接近正常小鼠的水平。


图注:(上)CasRx通过靶向的降解Ptbp1 mRNA从而实现Ptbp1基因表达的下调。(中)视网膜下注射AAV-GFAP-CasRx-Ptbp1可以特异性的将视网膜穆勒胶质细胞转分化为视神经节细胞,转分化而来视神经节细胞可以和正确的脑区建立功能性的联系,并且提高永久性视力损伤模型小鼠的视力。(下)在纹状体中注射AAV-GFAP-CasRx-Ptbp1可以特异性的将星形胶质细胞转分化为多巴胺神经元,从而基本消除了帕金森疾病模型小鼠的运动症状。

据了解,该工作在投稿Cell杂志期间得到了审稿人的高度评价,审稿人认为“如何利用RNA靶向CRISPR系统来达到治疗的目的,这项研究给出了一个优雅和令人振奋的例子This manuscript presents an elegant and exciting example of using RNA-targeting CRISPR systems for therapeutic purposes”,“以往的研究都集中在利用RNA靶向CRISPR系统来直接降低遗传病模型中有害的突变转录本,而这项研究却利用这些工具在体内进行治疗性的细胞命运转分化,从而展现一个全新的视角,这是非常有意思的,而且可以得到广泛的应用previous efforts of RNA-targeting CRISPR systems focused on knockdown of toxic mutant transcripts in models of mendelian inherited genetic disease, whereas this study presents the novel aspect of using these tools for in vivo therapeutic cell fate conversion, which is quite interesting and could be a broadly applicable approach”。

需要指出的是,虽然科学家们在实验室里取得了重要进展,但是要将研究成果真正应用于人类疾病的治疗,还有很多工作要做,未来还需要进一步在非人灵长类动物身上进行进一步研究。人类的视神经节细胞能否再生?帕金森患者是否能通过该方法被治愈?这些问题有待全世界的科研工作者共同努力去寻找答案。

总的来说,这是一项极其有价值而且重要的工作,为未来众多神经退行性急性的治疗提供了非常有前景的治疗方案。

脑智卓越中心博士后周海波、助理研究员苏锦霖、博士研究生胡新德、周昌阳、李贺、陈昭融为论文共同第一作者。中科院脑智卓越中心杨辉研究员和周海波博士为本文的共同通讯作者。同时,研究团队特别的感谢脑智卓越中心学术主任蒲慕明院士以及智卓越中心徐华泰研究员、张翼凤研究员、姚海珊研究员和周嘉伟研究员对该项研究的大力协助。


原文链接:https://doi.org/10.1016/j.cell.2020.03.024


参考文献

1、Konermann, S., Lotfy, P., Brideau, N. J., Oki, J., Shokhirev, M. N., & Hsu, P. D. (2018). Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell, 173(3), 665-676.

2、He, B., Peng, W., Huang, J., Zhang, H., Zhou, Y., Yang, X., ... Yang, H. & Peng, H. (2020). Modulation of metabolic functions through Cas13d-mediated gene knockdown in liver. Protein & Cell, 1-7.

3、Xue, Y., Ouyang, K., Huang, J., Zhou, Y., Ouyang, H., Li, H., ... & Fu, X. (2013). Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. Cell, 152(1-2), 82-96.